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The nonlinear dynamics of electron-acoustic localized structures in a collisionless and

unmagnetized plasma consisting of “cool” inertial electrons, “hot” electrons having a kappa

distribution, and stationary ions is studied. The inertialess hot electron distribution thus has a long-

tailed suprathermal (non-Maxwellian) form. A dispersion relation is derived for linear electron-

acoustic waves. They show a strong dependence of the charge screening mechanism on excess

suprathermality (through j). A nonlinear pseudopotential technique is employed to investigate the

occurrence of stationary-profile solitary waves, focusing on how their characteristics depend on the

spectral index j, and the hot-to-cool electron temperature and density ratios. Only negative polarity

solitary waves are found to exist, in a parameter region which becomes narrower as deviation from

the Maxwellian (suprathermality) increases, while the soliton amplitude at fixed soliton speed

increases. However, for a constant value of the true Mach number, the amplitude decreases for

decreasing j. VC 2011 American Institute of Physics. [doi:10.1063/1.3606365]

I. INTRODUCTION

Electron-acoustic waves may occur in plasmas charac-

terized by a co-existence of two distinct electron popula-

tions, here referred to as “cool” and “hot” electrons. These

are electrostatic waves of high frequency (in comparison

with the ion plasma frequency), propagating at a phase speed

which lies between the hot and cool electron thermal veloc-

ities. On such a fast (high frequency) dynamical scale, the

positive ions may safely be assumed to form a uniform sta-

tionary charge background simply providing charge neutral-

ity, yet playing no essential role in the dynamics. The cool

electrons provide the inertia necessary to maintain the elec-

trostatic oscillations, while the restoring force comes from

the hot electron pressure.

A matter of importance in electrostatic wave propaga-

tion (although inevitably overlooked in fluid plasma models)

is Landau damping, which becomes stronger when the phase

velocity approaches the thermal velocity of either electron

component; thus, the wave can propagate in the plasma only

within a restricted range of parameter values. It turns out that

electron-acoustic waves are weakly damped for a tempera-

ture ratio Tc/Th . 0.1 and provided that the cool electrons

represent an intermediate fraction of the total electron den-

sity: 0.2 . nc/(ncþ nh) . 0.8.1–4 The wavenumber k to mini-

mize damping lies roughly between 0:2k�1
Dc and 0:6k�1

Dc

(where kDc is the cool electron Debye length). These results

on bi-Maxwellian plasmas were later extended to include the

effect of the excess suprathermality of the hot electrons5 (a

physical feature to be discussed below). It was found that

excess suprathermal electrons do cause a modification of the

damping curves, but the overall qualitative conclusion

remains unchanged: electron-acoustic waves survive Landau

damping over a wide range of parameter values.5 However,

care must be taken in the choice of plasma configuration

when studying nonlinear electron-acoustic structures, so as

to ensure that one is considering a region of parameter space

in which Landau damping is minimized.

Electron-acoustic waves occur in laboratory experi-

ments6,7 and space plasmas, e.g., in the Earth’s bow shock8–10

and in the auroral magnetosphere.1,11 They are associated

with broadband electrostatic noise (BEN), a common high-

frequency background activity, regularly observed by satellite

missions in the plasma sheet boundary layer (PSBL).12–14

BEN emission includes a series of isolated bipolar pulses,

within a frequency range from�10 Hz up to the local electron

plasma frequency (�10 kHz).12 This clearly suggests that

BEN is related to electron dynamics rather than to the

ions.12,14

In the standard bi-Maxwellian picture, the two electron

species would each be assumed to be in a (different) thermal

Maxwellian distribution, parameterized via two distinct tem-

perature values, Tc and Th, respectively.15–17 Contrary to this

picture, space and laboratory plasmas often possess an

excess population of suprathermal electrons, a fact which is

reflected in a power law distribution at high velocity (above

the electron thermal speed). This excess suprathermality phe-

nomenon is well modeled by a generalized Lorentzian or

j-distribution.18–22 The common form of the isotropic
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(three-dimensional) generalized Lorentzian or j-distribution

function is given by18,20,22

fjðvÞ ¼ n0ðpjh2Þ�3=2 Cðjþ 1Þ
C j� 1

2

� � 1þ v2

jh2

� ��j�1

; (1)

where n0 is the equilibrium number density of the electrons,

v the velocity variable, and h the most probable speed, which

acts as a characteristic “modified thermal speed,” and is

related to the usual thermal speed vth;e¼ (2kBTe/me)
1/2 by

h ¼ vth;e j� 3
2

� �
=j

� �1=2
. Here kB is the Boltzmann constant,

me the electron mass, and Te the temperature of an equivalent

Maxwellian having the same energy content.22 The term

involving the Gamma function (C) arises from the normal-

ization of fj(v), viz.,
Ð

fjðvÞd3v ¼ n0. Here, suprathermality

is denoted by the spectral index j, with j > 3
2
, for reality of

the most probable speed, h.22 Low values of j are associated

with a significant number of suprathermal particles; on the

other hand, for j ! 1, a Maxwellian distribution is

recovered.

The j-distribution was first applied to model velocity

distributions observed in space plasmas that were Maxwel-

lian-like at lower velocities, but had a power-law form at

higher speeds,23 and was later applied in a variety of stud-

ies, successfully fitting many real space observations, e.g.,

Refs. 9, 21, 24, 25. Typical j values usually lie in the range

2<j< 6. For example, observations in the earth’s fore-

shock satisfy 3<je< 6,9 measurements of plasma sheet

electron and ion distributions yield ji¼ 4.7 and je¼ 5.5

(here, e denotes electrons and i ions),24 and coronal elec-

trons in the solar wind are modeled with 2 <je< 6.25

Recent observations of the radial distribution of the electron

population in Saturn’s magnetosphere also point towards a

kappa distribution (je^ 2.9� 4.2).26 Therefore, we focus

our interest in the following on the range 2< j< 6; in fact,

the Maxwellian limit is already practically attained for val-

ues above j^ 10.

A linear analysis of electron-acoustic waves was first

carried out by assuming an unmagnetized Maxwellian

homogeneous plasma, which exhibited a heavily damped

acoustic-like solution in addition to Langmuir waves and

ion-acoustic waves.27 Those early results were later

extended to take into account the effect of excess suprather-

mal particles,5,28 whose presence in fact results in an

increase in the Landau damping at small wavenumbers, in

particular when the hot electron component is dominant.5,29

Studies of linear and nonlinear electron-acoustic waves in

plasmas with nonthermal electrons have received a great deal

of interest in recent years.30–34 Negative potential solitary

structures were shown to exist in a two-electron plasma, either

for Maxwellian30 or for nonthermal31,35 hot electrons. Interest-

ingly, either incorporation of finite inertia32,33 or the addition

of a beam component36,37 may lead to the existence of positive

and negative potential solitons. A recent investigation has

established the properties of modulated electron-acoustic

wavepackets in kappa-distributed plasmas, and has studied the

effect of suprathermality on the amplitude (modulational)

stability.38

In this paper, we study the linear and nonlinear dynam-

ics of electron-acoustic waves in a plasma consisting of

cool adiabatic electron and hot j-distributed electrons, in

addition to stationary ions. The paper is organised as fol-

lows. An electron-plasma-fluid model is presented in Sec.

II. In Sec. III, a linear dispersion relation is derived and dis-

cussed. In Sec. IV, the Sagdeev pseudopotential method is

employed to investigate the occurrence of stationary profile

electrostatic solitary waves. In Sec. V, we depict the exis-

tence domain of the electron-acoustic solitary waves. Sec.

VI is devoted to a parametric investigation of the form of

the Sagdeev pseudopotential and of the characteristics of

electron-acoustic solitary waves. Our results are summar-

ized in Sec. VII.

II. MODEL EQUATIONS

We consider a plasma consisting of three components,

namely a cool electron-fluid (at temperature Tc= 0), an iner-

tialess hot electron component with a nonthermal (j) veloc-

ity distribution, and uniformly distributed stationary ions.

The cool electron behavior is governed by the continuity

equation

@nc

@t
þ @ðncucÞ

@x
¼ 0; (2)

and the momentum equation

@uc

@t
þ uc

@uc

@x
¼ e

me

@/
@x
� 1

menc

@pc

@x
: (3)

The pressure of the cool electrons is governed by

@pc

@t
þ uc

@pc

@x
þ cpc

@uc

@x
¼ 0: (4)

Here, nc, uc and pc are the number density, the velocity and

the pressure of the cool electron fluid, / is the electrostatic

wave potential, e the elementary charge, and c¼ (fþ 2)/f
denotes the specific heat ratio (for f degrees of freedom). We

shall assume c¼ 3 (viz., f¼ 1 in 1D) for the adiabatic cool

electrons.

We assume the ions to be stationary (immobile), i.e., in

a uniform state ni¼ ni,0¼ const. (where ni,0 is the undis-

turbed ion density) at all times. In order to obtain an expres-

sion for the number density of the hot electrons, nh, based on

the j distribution (1), one may integrate Eq. (1) over the ve-

locity space, to obtain20

nhð/Þ ¼ nh;0 1� e/

kBTh j� 3
2

� �
 !�jþ1=2

; (5)

where nh,0 and Th are the equilibrium number density and

“temperature” of the hot electrons, respectively, and j is the

spectral index measuring the deviation from thermal

equilibrium.
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The densities of the (j-distributed) hot electrons, the ad-

iabatic cool electrons, and the stationary ions are coupled via

Poisson’s equation

@2/
@x2
¼ � e

e0

ðZni � nc � nhÞ; (6)

where e0 is the permittivity constant, nh and ni are the num-

ber density of hot electrons and ions, respectively.

At equilibrium, the plasma is quasi-neutral, so that

nc;0 þ nh;0 ¼ Zni;0; (7)

implying Zni,0/nc,0¼ 1þb, where we have defined the hot-to-

cool electron density ratio

b ¼ nh;0

nc;0
: (8)

According to Ref. 1, Landau damping is minimized in the

range 0.2 . nc,0/(nc,0þ nh,0) . 0.8, implying 0.25 � b � 4.

This is our region of interest in what follows, as nonlinear

structures will not be sustainable for plasma configurations

for which the linear waves are strongly damped.

Scaling by appropriate quantities, we obtain the normal-

ized set of equations

@n

@t
þ @ðnuÞ

@x
¼ 0; (9)

@u

@t
þ u

@u

@x
¼ @/
@x
� r

n

@p

@x
; (10)

@p

@t
þ u

@p

@x
þ 3p

@u

@x
¼ 0; (11)

@2/
@x2
¼ nþ b 1� /

j� 3=2

� 	�jþ1=2

� b� 1: (12)

Here, n, u, and p denote the cool electron fluid density, velocity,

and pressure variables normalized with respect to nc,0,

cth¼ [kBTh/me]
1/2, and nc,0kBTc, respectively. Time and space

were scaled by the plasma period x�1
pc ¼ ðnc;0e2=e0meÞ�1=2

and the characteristic length k0¼ (e0kBTh/nc,0e
2)1/2, respectively.

Finally, / is the wave potential scaled by kBTh/e. We have

defined the temperature ratio of the cool to the hot electrons as

r ¼ Tc=Th: (13)

III. LINEAR WAVES

As a first step, we linearize Eqs. (9)–(12), to study

small-amplitude harmonic waves of frequency x and wave-

number k. The linear dispersion relation for electron-acoustic

waves then reads

x2 ¼ k2

k2 þ k2
D;j

þ 3rk2; (14)

where
ffiffiffiffiffiffi
3r
p

is essentially the (normalized) cool electron ther-

mal velocity. After taking account of differences in normal-

ization, this agrees with the form found in Ref. 39.

We note the appearance of a normalized j-dependent

screening factor (scaled Debye wavenumber) kD,j in the de-

nominator, defined by

kD;j �
1

kD;j
�

b j� 1
2

� �
j� 3

2

" #1=2

: (15)

Since this is the inverse of the (Debye) screening length, we

notice that the latter in fact decreases due to an excess in

suprathermal electrons (i.e., kD,j< kD,1 for any finite value

of j). This is in agreement with Refs. 40–42; note also the

discussion in Ref. 35.

From Eq. (14), we see that the frequency x(k), and

hence also the phase speed, increases with higher tempera-

ture ratio r¼Tc/Th. However, this is usually a small correc-

tion to the dominant first term on the right hand side of (15).

For large wavelength values (small k� kD,j), the phase

speed is given by

vph ’
j� 3

2

b j� 1
2

� �þ 3r

" #1=2

; (16)

while on the other hand, the thermal contribution is dominant

for high wavenumber k� kD,j, i.e.,

vph ’ ð3rÞ1=2: (17)

However, we should recall from kinetic theory1–3,5 that

both for very long wavelengths (kkDc . 0.2) and very short

wavelengths (kkDc � 0.6), the wave is strongly damped,

and thus these limits may be of academic interest only. The

mode is weakly damped only for intermediate wavelength

values, where its acoustic nature is not manifest.1–3,5,29

Here, kDc¼ (e0kBTc/nc,0e2)1/2 is the cool electron Debye

length.

Restoring dimensions for a moment, the dispersion rela-

tion becomes

x2 ¼ x2
pc

k2k2
Dh

k2k2
Dh þ

j� 1
2

j� 3
2

þ 3k2c2
tc: (18)

where ctc¼ (kBTc/me)
1/2 is the cool electron thermal speed

and kDh is the hot electron Debye length defined by

kDh ¼
e0kBTh

nh;0e2

� �1=2

¼ b�1=2k0: (19)
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It appears appropriate to compare the above results with

earlier results, in the linear regime. First of all, we note that

Ref. 5 has adopted a kinetic description of electron-acoustic

waves in suprathermal plasmas. For this purpose, Eq. (18)

may be cast in the form

x2 ¼ k2 C2
sj

1þ k2k2
jh

þ 3c2
tc

 !

¼ x2
pc

1þ 3k2k2
Dc þ 3k2

Dc=k
2
jh

1þ 1=k2k2
jh

: (20)

Here, C2
sj ¼ x2

pck
2
kh ¼ ðnc;0=nh;0Þ½ðj� 3=2Þ=ðj� 1=2Þ	c2

th is

the electron acoustic speed in a suprathermal plasma, while

the effective shielding length is given by k2
jh ¼ ½�0kBTh=

nh;0e2	½ðj� 3=2Þ=ðj� 1=2Þ	. Our Eq. (20) above agrees

with relation (3) in Ref. 5 (upon considering the limit

kDc ! 0 therein). In the limit j !1 (Maxwellian distribu-

tion), Eq. (20) recovers precisely Eq. (1) in Ref. 36, upon

considering the limit kDc ! 0. Furthermore, one recovers

exactly Eq. (5) in Ref. 14 for Maxwellian plasma in the cold-

electron limit (Tc¼ 0).

In Figure 1, we depict the dispersion curve of the elec-

tron-acoustic mode, showing the effect of varying the values

of the spectral index j and the density ratio b. It is confirmed

numerically that the phase speed (x/k) increases weakly with

a reduction in suprathermal particle excess, as the Maxwel-

lian is approached, and that there is a significant reduction in

phase speed as the plasma model changes from one in which

the cool electrons dominate, to one which is dominated by

the hot electron density.

IV. NONLINEAR ANALYSIS FOR LARGE AMPLITUDE
SOLITARY WAVES

Anticipating constant profile solutions, we shall consider

Eqs. (9)–(12) in a stationary frame traveling at a constant

normalized velocity M (to be referred to as the Mach

number), implying the transformation n¼ x – Mt. The space

and time derivatives are thus replaced by @/@x¼ d/dn and

@/@t¼ –Md/dn, respectively, so Eqs. (9)–(12) take the form

�M
dn

dn
þ dðnuÞ

dn
¼ 0; (21)

�M
du

dn
þ u

du

dn
¼ d/

dn
� r

n

dp

dn
; (22)

�M
dp

dn
þ u

dp

dn
þ 3p

du

dn
¼ 0; (23)

d2/

dn2
¼ �ðbþ 1Þ þ nþ b 1� /

j� 3
2

� �
" #�jþ1=2

: (24)

We assume that the equilibrium state is reached at both infin-

ities (n !61). Accordingly, we integrate and apply the

boundary conditions n¼ 1, p¼ 1, u¼ 0, and /¼ 0 at 61.

One thus obtains

u ¼ M 1� 1

n

� �
; (25)

u ¼ M � ðM2 þ 2/� 3n2rþ 3rÞ1=2; (26)

and

p ¼ n3: (27)

Combining Eqs. (25)–(27), we obtain the following biqua-

dratic equation for the cool electron density

3rn4 � ðM2 þ 2/þ 3rÞn2 þM2 ¼ 0: (28)

The solution of Eq. (28) may be written as

n ¼ 1

2
ðnðþÞ6nð�ÞÞ; (29)

where

nðþÞ �
2/þ ðM þ

ffiffiffiffiffiffi
3r
p
Þ2

3r

" #1=2

; (30)

nð�Þ �
2/þ ðM �

ffiffiffiffiffiffi
3r
p
Þ2

3r

" #1=2

: (31)

From the boundary conditions, n¼ 1 at /¼ 0, it follows that

the negative sign must be taken in Eq. (29). Furthermore, we

FIG. 1. (Color online) Dispersion curve for harmonic (linear) electron-

acoustic waves. Upper panel: The variation of the dispersion curve for dif-

ferent values of j is depicted. Curves from top to bottom: j¼ 10 (solid), 4

(dashed), 3 (dotted-dashed), and 2 (dotted curve). Here, r¼ 0.01 and b¼ 1.

Bottom panel: Variation of the dispersion curve for different values of b.

Curves from top to bottom: b¼ 0.5 (solid), 1 (dashed), and 3 (dotted-dashed

curve). Here, r¼ 0.01 and j¼ 3.
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shall assume that M >
ffiffiffiffiffiffi
3r
p

, i.e., that the cool electrons are

supersonic, while the hot electrons are subsonic, thus we

require that M< 1.

Reality of the density variable imposes the requirement

2/þ ðM �
ffiffiffiffiffiffi
3r
p
Þ2 > 0, which implies a limit on the electro-

static potential value j/maxj ¼ 1
2
ðM �

ffiffiffiffiffiffi
3r
p
Þ2 associated with

negative solitary structures (positive electric potentials,

should they exist, satisfy the latter condition automatically,

and are thus not limited).

Substituting the density expression (29)–(31) into Pois-

son’s equation (24) and integrating, yields the pseudo-energy

balance equation for a unit mass in a conservative force field,

if one defines n as “time” and / as “position” variable

1

2

d/
dn

� �2

þWð/Þ ¼ 0; (32)

where the Sagdeev pseudopotential W(/) is given by

Wð/Þ ¼ b 1� 1þ /

�jþ 3
2

 !�jþ3=2
2
4

3
5þ ð1þ bÞ/

þ 1

6
ffiffiffiffiffiffi
3r
p ðM þ

ffiffiffiffiffiffi
3r
p
Þ3 � ðM �

ffiffiffiffiffiffi
3r
p
Þ3

h
� ð2/þ ½M þ

ffiffiffiffiffiffi
3r
p
	2Þ3=2

þð2/þ ½M �
ffiffiffiffiffiffi
3r
p
	2Þ3=2

i
: (33)

V. SOLITON EXISTENCE DOMAIN

We next investigate the conditions for existence of soli-

tons. First, we need to ensure that the origin at /¼ 0 is a root

and a local maximum of W in Eq. (33), i.e., W(/)¼ 0,

W0(/)¼ 0, and W00(/)< 0 at /¼ 0,43–45 where primes denote

derivatives with respect to /. It is easily seen that the first

two constraints are satisfied. We thus impose the condition

F1ðMÞ ¼ �W00ð/Þj/¼0 ¼
b j� 1

2

� �
j� 3

2

� 1

M2 � 3r
> 0: (34)

Eq. (34) provides the minimum value for the Mach number,

M1, i.e.,

M > M1 ¼
j� 3

2

b j� 1
2

� �þ 3r

" #1=2

: (35)

Clearly, M1 is the (normalized) electron-acoustic phase

speed – cf. Eq. (16). It is thus also related to Debye screening

via the screening parameter kD,j in (15), associated with the

hot j-distributed electrons. We deduce that soliton solutions

are super-acoustic. For Maxwellian hot electrons (j ! 1)

and cold “cool” electrons (r¼ 0), we obtain M1¼ 1/b1/2,

thus recovering the normalized phase speed for electron-

acoustic waves in a Maxwellian plasma.5 The lower Mach

number limit, M1, increases with Tc (via r), and decreases

for lower values of j (large excess of suprathermal elec-

trons), and hence the sound speed in suprathermal plasmas is

reduced, in comparison with Maxwellian plasmas (j!1).

An upper limit for M is found through the fact that the

cool electron density becomes complex at /¼/max, and

hence the largest soliton amplitude satisfies F2(M)

¼W(/)j/¼/max> 0. This yields the following equation for

the upper limit in M:

F2ðMÞ ¼ �
1

2
ð1þ bÞðM �

ffiffiffiffiffiffi
3r
p
Þ2 � 4

3
M3=2ð3rÞ1=4

þ b 1� 1þ ðM �
ffiffiffiffiffiffi
3r
p
Þ2

2j� 3

" #�jþ3=2
0
@

1
A

þM2 þ r ¼ 0: (36)

Solving Eq. (36) provides the upper limit M2(j, b, r) for ac-

ceptable values of the Mach number for solitons to exist.

For comparison, for a Maxwellian distribution (here

recovered as j!1), the constraints reduce to

F1ðMÞ ¼ b� 1

M2 � 3r
> 0; (37)

F2ðMÞ ¼ �
1

2
ð1þ bÞðM �

ffiffiffiffiffiffi
3r
p
Þ2 � 4

3
M3=2ð3rÞ1=4

þ b 1� exp � 1

2
ðM �

ffiffiffiffiffiffi
3r
p
Þ2

� 	� �
þM2 þ r > 0: (38)

The latter equation provides the upper limit M2, while the

lower limit becomes M1¼ (1/bþ 3r)1/2.

In the opposite limit of ultrastrong suprathermality, i.e.,

j! 3/2, the Mach number threshold approaches a non-zero

limit M1 ¼
ffiffiffiffiffiffi
3r
p

, which is essentially the thermal speed, as

noted above (recall that M >
ffiffiffiffiffiffi
3r
p

by assumption). The

upper limit M2 is then given by

F2ðMÞ ¼ �
1

2
ð1þ bÞðM �

ffiffiffiffiffiffi
3r
p
Þ2 þM2 þ r

� 4

3
M3=2ð3rÞ1=4 ¼ 0: (39)

Interestingly, the two limits M1 and M2 both tend to the same

limit as j ! 3/2, namely,
ffiffiffiffiffiffi
3r
p

, where the soliton existence

region vanishes, as the kappa distribution breaks down.

We have studied the existence domain of electron-

acoustic solitary waves for different values of the parame-

ters. The results are depicted in Figs. 2–3. Solitary structures

of the electrostatic potential may occur in the range

M1<M<M2, which depends on the parameters b, j, and r.

We recall that we have also assumed that cool electrons are

supersonic (in the sense M >
ffiffiffiffiffiffi
3r
p

),43–45 and the hot elec-

trons subsonic (M< 1), and care must be taken not to go

beyond the limits of the plasma model.

The interval [M1, M2] where solitons may exist is

depicted in Fig. 2, in two opposite cases: in (a) and (c) two

very low, and in (b) one very high value of j. We thus see

that for both a quasi-Maxwellian distribution and one with a

large excess suprathermal component of hot electrons, both

M1 and M2 decrease with an increase in the relative density

parameter b for fixed j and soliton speed M. Further, the

upper limit falls off more rapidly, and thus the existence
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domain in Mach number becomes narrower for higher values

of the hot-to-cool electron density ratio. Comparing the two

frames (a) and (b) in Fig. 2, we immediately notice that

suprathermality (low j) results in solitons propagating at

lower Mach number values, a trend which is also seen in Fig.

2(c). Another trend that is visible in Figs. 2–3(a) is that

increased thermal pressure effects of the cool electrons, man-

ifested through increasing r, also lead to a narrowing of the

Mach number range that can support solitons. Finally, we

note that for b� 1, the upper limit found from Eq. (36) rises

above the limit M¼ 1 required by the assumptions of the

model, and the latter then forms the upper limit.

Interestingly, in Figs. 2 and 3, the existence region

appears to shrink down to nil, as the curves approach each

other for high b values. This is particularly visible in Fig.

2(c), for a very low value of j (j¼ 1.65). This is not an

unexpected result, as high values of b are equivalent to a

reduction in cool electron relative density, which leads to

our model breaking down if the inertial electrons vanish. We

recall that a value b> 4 is a rather abstract case, as it corre-

sponds to a forbidden regime, since Landau damping will

prevent electron-acoustic oscillations from propagating.

Similarly, a high value of the temperature ratio, such as

r¼ 0.2, takes us outside the physically reasonable domain.

Nevertheless, as it appears that the lower and upper limits in

M approach each other asymptotically for high values of b,

we have carried out calculations for increasing b, up to

b¼ 100 for r¼ 0.2 as an academic exercise, and can confirm

that the two limits do not actually intersect.

Figure 3 shows the range of allowed Mach numbers as a

function of j, for various values of the temperature ratio r.

As discussed above, increasing j towards a Maxwellian dis-

tribution (j !1) broadens the Mach number range and

yields higher values of Mach number. On the other hand,

both upper and lower limits decrease as the limiting value j
! 3/2 is approached. The qualitative conclusion is analo-

gous to the trend in Fig. 2: stronger excess suprathermality

leads to solitons occurring in narrower ranges of M. Further-

more, as illustrated in Figs. 2 and 3(a), the Mach number

threshold M1 approaches the upper limit M2 for high values

of r and b: both increased hot-electron density and cool-

FIG. 3. (Color online) Variation of the lower limit M1 (lower curves) and

the upper limit M2 (upper curves) with the suprathermality parameter j for

different values of the temperature ratio r (upper panel), and density ratio b
(bottom panel). Solitons may exist for values of the Mach number M in the

region between the lower and upper curves of the same style/color. Upper

panel: r¼ 0.01 (solid curve), 0.02 (dashed), and 0.04 (dotted-dashed). Here,

we have taken b¼ 2. Lower panel: b¼ 1.8 (solid), 2 (dashed), 2.2 (dotted-

dashed), and 5 (solid circles). Here, r¼ 0.02.

FIG. 2. (Color online) Variation of the lower limit M1 (lower curves) and

the upper limit M2 (upper curves) with the hot-to-cold electron density ratio

b for different values of the temperature ratio r. Solitons may exist for val-

ues of the Mach number M in the region between the lower and the upper

curve(s) of the same style/color. Curves: (a-b) r¼ 0.01 (solid), 0.02

(dashed), and 0.04 (dotted-dashed), and (c) r¼ 0.01 (solid), 0.1 (dashed),

and 0.2 (dotted-dashed). Here, we have taken: (a) j¼ 2, (b) j¼ 100 (quasi-

Maxwellian), and (c) j¼ 1.65.
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electron thermal effects shrink the permitted soliton exis-

tence region.

Figure 3(b) depicts the range of allowed Mach numbers

as a function of j for various values of the density parameter

b (for a fixed indicative r value). We note that both curves

decrease with an increase in b. Although it lies in the

damped region, we have also depicted a high b regime for

comparison (solid-crosses curve).

We conclude this section with a brief comparison of our

work with that of Ref. 39. The latter did not consider exis-

tence domains at all, let alone their dependence on plasma

parameters, but merely plotted some Sagdeev potentials and

associated soliton potential profiles for chosen values of

some of the parameters, so as to extract some trends. En pas-

sant, there is indirect mention of an upper limit in M, in that

it is commented that as increasing values of M are consid-

ered, at some stage solitary waves cease to exist.39

VI. SOLITON CHARACTERISTICS

Having explored the existence domains of electron-

acoustic solitons, subject to the constraints of the plasma

model, we now turn to consider aspects of the soliton charac-

teristics. We have numerically solved Eq. (32) for different

representative parameter values, in order to investigate their

effects on the soliton characteristics. We point out that, vary-

ing different parameters, we have found only negative poten-

tial solitons, regardless of the value of j considered. This is

not altogether unexpected, as it has been found in a number

of examples that, in contrast to the Cairns model,46 the kappa

distribution does not lead to reverse polarity acoustic

solitons.20,47

Figure 4 shows the variation of the Sagdeev pseudopo-

tential W(/) with the normalized potential /, along with the

associated pulse solutions (soliton profiles), for different val-

ues of the temperature ratio, r¼ Tc/Th (keeping b¼ 1.3,

j¼ 2.5, and Mach number M¼ 0.75, all fixed). The Sagdeev

potential well becomes deeper and wider as r is increased.

We thus find associated increases in the soliton amplitude

FIG. 4. (Color online) The pseudopotential W(/) (upper panel) and the

associated solution (electric potential pulse) / (lower panel) are depicted

versus position n, for different values of the temperature ratio r. We have

taken: r¼ 0.01 (solid curve), 0.02 (dashed curve), and 0.04 (dotted-dashed

curve). The other parameter values are b¼ 1.3, j¼ 2.5, and M¼ 0.75.

FIG. 5. (Color online) (a) The pseudopotential W(/) and the associated sol-

utions: (b) electric potential pulse /, (c) density n, and (d) velocity u are

depicted versus position n, for different j. We have taken: j¼ 2.5 (solid

curve), 3 (dashed curve), and 3.5 (dotted-dashed curve). The other parameter

values are r¼ 0.02, b¼ 1.6, and M¼ 0.75.
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and in profile steepness (see Fig. 4(b)). Thermal effects

therefore are seen to amplify significantly the electric poten-

tial disturbance at fixed M.

Figure 5(a) shows the Sagdeev pseudopotential W(/) for

different values of j. The electrostatic pulse (soliton) solu-

tion depicted in Fig. 5(b) is obtained via numerical integra-

tion. The pulse amplitude j/mj increases for lower j,

implying an amplification of the electric potential disturb-

ance as one departs from the Maxwellian. Once the electric

potential has been obtained numerically, the cool-electron

fluid density (Fig. 5(c)) and velocity disturbances (Fig. 5(d))

are determined algebraically. Both these disturbances are

positive in this case, and again, for lower j values, the pro-

files reflecting the compression and the increase in velocity

are steeper but narrower.

We recall that as various parameter values are varied,

the true acoustic speed in the plasma configuration, M1, also

varies. As solitons are inherently super-acoustic, it is clear

that the effect of a changing true acoustic speed could mask

other dependences. Hence, it is also desirable to explore soli-

ton characteristics as a function of the propagation speed M,

measured relative to the true acoustic speed, M1. This ratio,

M/M1, thus represents the “true” Mach number. It has been

shown that for any plasma made up of barotropic fluids, arbi-

trary amplitude solitons satisfy @W/@M< 0,48–50 from which

it follows that @/m/@M> 0, where /m is the soliton ampli-

tude. Thus, one expects that the soliton amplitude is an

increasing function of M/M1. This is true for both KdV soli-

tons (small amplitudes, propagating near the sound speed) –

“taller is faster” – and, in principle, also for fully nonlinear

(Sagdeev) pulses (where the soliton characteristics can only

be found numerically47,51). In Fig. 6, we have plotted the sol-

iton amplitude j/mj as a function of the ratio M/M1, for a

range of values of the parameter j. Clearly, the amplitude

increases linearly with M/M1 for all values of j. The two

plots for j � 2.5 both cover the full range up to M¼M2.

However, although we deduce from earlier figures that M2

increases with j, we see that the endpoints of the plots for j
� 3 occur at decreasing values of M/M1, and indeed decreas-

ing maximum amplitudes /m. That occurs as, for the chosen

values of b and r, M2 exceeds unity for j � 3, and we have

truncated the curves at the point where M¼ 1, to remain

within the range defined by the plasma model.

The effect of the hot-to-cool electron density ratio, b on

the soliton characteristics is shown in Fig. 7. We see that the

soliton excitations are amplified and profiles steepened (the

Sagdeev potential well becomes wider and deeper), as the

density of the hot (nonthermal) electrons is increased (i.e.,

for higher b), viz., keeping j, r, and M fixed. Furthermore,

an increase in the number density of the hot electrons also

leads to an increase in the perturbation of both density n, and

velocity u of the cool electrons (figure omitted).

VII. CONCLUSION

In this article, we have performed a thorough linear and

nonlinear analysis, from first principles, of electron acoustic

excitations occurring in a nonthermal plasma consisting of

hot j-distributed electrons, adiabatic cool electrons, and

immobile ions.

First, we have derived a linear dispersion relation, and

investigated the dependence of the dispersion characteristics

on the plasma environment (degree of “suprathermality”

through the parameter j, plasma composition, and thermal

effects).

Then, we have employed the Sagdeev pseudopotential

method to investigate large amplitude localized nonlinear

electrostatic structures (solitary waves) and to determine the

region in parameter space where stationary profile solutions

FIG. 6. (Color online) The dependence of the pulse amplitude j/mj on the

Mach number-to-sound-speed ratio M/M1 is depicted, for different values of

j. From top to bottom: j¼ 100 (solid curve); 10 (dashed curve); 4 (dotted-

dashed curve); 3 (crosses); 2.5 (solid circles); 2 (solid squares). Here,

r¼ 0.01 and b¼ 1.3.

FIG. 7. (Color online) (Upper panel) The pseudopotential W(/) vs. / and

(lower panel) the associated electric potential pulse / vs. n are depicted, for

different values of the hot-to-cold electron density ratio b. From top to bot-

tom: b¼ 1.3 (solid curve); 1.5 (dashed curve); 1.7 (dotted-dashed curve).

Here r¼ 0.01, j¼ 2.5 and M¼ 0.75.
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may exist. Only negative potential solitons were found. The

existence domain for solitons was shown to become nar-

rower in the range of solitary wave speed, with an increase

in the excess of suprathermal electrons in the hot electron

distribution (stronger “suprathermality,” lower j value). The

dependence of the soliton characteristics on the hot electron

number density (through the parameter b) and on the hot-to-

cool electron temperature ratio r were also studied. A series

of appropriate examples of pseudopotential curves and soli-

ton profiles were computed numerically, in order to confirm

the predictions arising from the study of existence domains.

It may be added that ionic motion/inertia, here neglected,

may also be included for a more accurate description but is

likely to have only minor quantitative effects.

We note, for completeness, that very recently two related

papers have appeared with a scope apparently similar to that

of the present article, viz., Refs. 39, 52. A word of comparison

may therefore be appropriate here, for clarity. The latter

authors52 indicate that they are using a form of kappa distribu-

tion from one of the pioneering papers in the field.53 Unfortu-

nately, their expression for the characteristic speed h does not

agree with the standard expression,53 and thus, the hot elec-

tron density does not take the usual form, Eq. (5).20 Further,

they use values of j � 0.6, i.e., well below the standard j-dis-

tribution cut-off of 3/2. Hence their results do not apply to the

standard form of j distribution.22

As regards the other paper,39 it did not consider exis-

tence domains at all (apart from an indirect mention of an

upper limit in M, as commented on in Sec. V above). Fur-

ther, no account is taken in the paper of the possible effects

of Landau damping on sustainable nonlinear structures, and

a number of the figures relate to values of b (called a in the

paper) which lie in the unphysical, damped range.

We note that Ref. 39 has also carried out a “small

amplitude” calculation yielding double layers. However,

when evaluated numerically, these turn out to be well

beyond the range of small amplitude, and that raises some

doubts about the validity of the results (their Figures 8–10).

Further, let us take together their Figures 2 and 8, and con-

sider the case of j¼ 3 and a¼ 0.2 (i.e., our b). The latter is,

of course, a value for which the linear wave is likely to be

strongly Landau damped. It appears from the figures that a

soliton occurs at M¼ 1.1 with amplitude� 0.9, while a dou-

ble layer occurs for M¼ 2.0 with amplitude� 0.7. This com-

bination of data does not satisfy the analytically proven

requirement that @W/@M< 0.48–50 There is no obvious rea-

son why that should be the case, and there thus seems to be

an error in at least one of these two figures.

Finally, we point out that we have not sought double

layers in our calculations. However, we would be surprised

if they did occur, as they are usually found as the upper limit

to a sequence of solitons for a polarity for which there is no

other limit. In this case, there clearly is an upper limit for

negative solitary waves, arising from the constraint

F2(M)¼ 0. It is in principle possible for a double layer to

occur at a lower value of M, and be followed by larger am-

plitude solitons at higher M, until the upper fluid cutoff such

as a sonic point or an infinite compression cutoff is

reached.54 However, such behaviour depends on the Sagdeev

potential having a fairly complicated shape, with subsidiary

local maxima, and we have not observed these for this

model.

We are not aware of any experimental studies with

which these theoretical results may be directly compared.

However, it has previously been shown that wave data may

be used to obtain an estimate for j, thus acting as a diagnos-

tic for the distribution function.19,55

Similarly, in this case, there are a number of indicators

amongst our results which experimenters may wish to con-

sider when interpreting observations. Thus, for instance, a

lower normalized phase velocity of the linear electron-acous-

tic wave than would be predicted by a Maxwellian model

(see Fig. 1) could be used to evaluate j.

Second, from Fig. 2, one sees that in low-j plasmas the

range of normalized soliton speeds is both narrower and of

larger value than one would expect for a Maxwellian. Thus,

if solitons are found with normalized speeds around

M^ 0.4, these can be understood only by allowing for addi-

tional suprathermal electrons (lower j). Further, from Fig. 2,

it follows that Maxwellian electrons give rise to a cutoff in

the density ratio b ^ 1, and hence, solitons observed in such

plasmas can only be explained in terms of lower j.

From Fig. 5, we note that at fixed values of the normal-

ized soliton speed, M, the amplitudes of the perturbations of

the normalized potential, cool electron density and cool elec-

tron speed due to the solitary waves all increase with

decreasing j. This is related to the increase of the true Mach

number M/M1 for smaller j, as the phase velocity M1 is

decreased. Thus larger disturbances are likely to be associ-

ated with increased suprathermality.

Finally, turning to Fig. 6, two effects are observed:

At fixed true Mach number, M/M1, the soliton amplitude

decreases with decreasing j (increasing suprathermality).

Despite that, the maximum values of soliton amplitude

are found to occur not for a Maxwellian, but for the rela-

tively low-j values of around 2.5-3. Thus, again, large

observed amplitudes are likely to be associated with a

low-j plasma.

Hence, as shown above, these results could assist in the

understanding of solitary waves observed in two-temperature

space plasmas, which are often characterized by a suprather-

mal electron distribution.
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